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Abstract

Penalized variable selection is a popular approach for describing the relationship between
the response, Y and explanatory variables, X . LASSO-based methods have received spe-
cial attention throughout the literature of regression analysis. But stringent conditions are
imposed on the X − y relation and on the error distribution. In this report, we present
Rank-LASSO as a robust, superior method over the general LASSO, which can be used
even when number of predictors is much larger than the sample size. The major proper-
ties of the Rank-LASSO has been presented in a non-asymptotic fashion, which makes it
useful for the aforementioned case of p >> n. The report also shows the superiority of
the thresholded modified version of Rank-LASSO in more general scenarios. Apart from
theoretical results, we present numerical experiments for demonstrating that performance
of the Rank-LASSO is substantially better than regular LAD-LASSO in terms of robust
model selection problems. The report is primarily based on Rejchel and Bogdan (2020).

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Identifiability of the support of β . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Estimation and Separability of RankLASSO when p > > n . . . . . . . . . . . . 7

4 Modifications of RankLASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Thresholded RankLASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Weighted RankLASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2



1 Introduction
One of the most ubiquitous problems while dealing with high-dimensional datasets is that of
variable selection. Many penalization-based model selection processes exist (see Hastie et al.
(2009)). Under the linear regression model,

Yi = β
′Xi + εi, i = 1, . . . ,n,

where Yi ∈ R is a response variable, Xi ∈ Rp is a vector of covariates, β ∈ Rp is the vector of
model parameters, and εi is a random error, the penalized variable selection approaches usually
recommend estimating the vector of model parameters β by

β̂ = argmax
β∈Rp

n

∑
i=1

(Yi −β
′Xi)

2 +Pen(β ),

where ∑
n
i=1(Yi − β ′Xi)

2 is the ℓ2-loss function measuring the model fit and Pen(β ) is the
penalty on the model complexity. One popular penalization-based estimation of β is called
the LASSO (Tibshirani (1996)), which uses the ℓ1-norm penalty. There is an extensive liter-
ature on LASSO-based variable selection, estimation and prediction, which are mainly in the
context of (generalized) linear models and many properties of the LASSO hold under specific
assumptions on the X −Y relationship and/or the distribution of the random errors (for exam-
ple, see Zhao and Yu (2006), Zou (2006)). However, real complex datasets may fail to satisfy
such assumptions. Robust methods are, thus, required in such scenarios.

In this report, we consider the single-index model

Yi = g(β ′Xi,εi), i = 1, . . . ,n, (1)

where g(.) is an unknown monotonic link function. Thus, we suppose that the covariates in-
fluence the response through the link function g(.) of the scalar product β ′Xi. No assumptions
are made on the form of the link function g or the distribution of the error εi. In particular, the
existence of expectation E(εi) is not assumed.

The goal of variable selection is the identification of the set of relevant covariates

T = { j : 1 ≤ j ≤ p,β j ̸= 0}. (2)

In this report, we discuss simple robust variable selection methods that are computationally fast
and can work efficiently in high-dimensional complex datasets. In the methods we discuss, the
observed responses Yi are replaced by their centered ranks. Ranks Ri are defined as

Ri =
n

∑
j=1

I(Yj ≤ Yi), i = 1, . . . ,n,

where I(.) is the indicator function. The relevant covariates are identified by solving the fol-
lowing LASSO problem:

RankLASSO: θ̂ = argmax
θ∈Rp

Q(θ)+λ |θ |1, (3)

where

Q(θ) =
1

2n

n

∑
i=1

(
Ri

n
− 1

2
−θ

′Xi

)2

. (4)
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The above requires no separate algorithm for computation and can be done using the inbuilt R
packages for the LASSO. In this project, we have used the “glmnet” package (Friedman et al.
(2021)) in R.

Using ranks in place of response variables is quite common in non-parametric statistics and
often lead to robust procedures. Zak et al. (2007), Bogdan et al. (2008) show the high effi-
ciency of rank-based model selection in the sparse high-dimensional regression models, where
the number of true non-zero regression coefficients is much smaller than the sample size n. The
RankLASSO is based on a convex optimization algorithm, which can be solved easily even
when p >> n and the explanatory variables are highly correlated.

One of the disadvantages of the rank approach is the loss of information about the shape of
the link function. Thus, RankLASSO cannot be directly used to build a predictive model for
the response variable. Modifications of the RankLASSO are discussed that successfully enable
the identification of significant covariates.

In this report, we discuss in Section (2) and (3) the model section consistency of RankLASSO.
In Section (4), we discuss two extensions of RankLASSO- Thresholded and Weighted Ran-
kLASSO. Finally in Section (5) we perform some simulation experiments to validate the theo-
retical results.

1.1 Notations
In this report, we will be using the following notations:

• X = (X1, . . . ,Xn),

• X̄ = 1
n ∑

n
i=1 Xi,

• Zi = (Xi,Yi), i = 1, . . . ,n,

• T ′ = {1, . . . , p}\T is a complement of T

• XT is a sub-matrix of X , with columns whose indices belong to the support T of β , see 2,

• θT is a restriction of a vector θ inRp to the indices from T ,

• p0 ia the number of elements in T

• the ℓq-norm of a vector is defined as |θ |q = (∑
p
j=1 |θ j|q)1/q for q ∈ [1,∞).

2 Identifiability of the support of β

We consider the single index model (1). Throughout the report, we assume that the design
matrix X and the random error term ε satisfy the following assumptions.

Assumption 1. We assume that (X1,ε1), . . . ,(Xn,εn) are i.i.d. random vectors such that the
distribution of X1 is absolutely continuous and X1 is independent of the noise variable ε1.
Additionally, we assume that E(X1) = 0, H = E(X1X ′

1) is positive definite and H j j = 1 for
j = 1, . . . , p.
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The single index model (1) doesn’t allow for the estimation of an intercept term and can identify
β upto a multiplicative constant (see Theorem 1) since any change or shift in β can be absorbed
in to g.

Assumption 2. We assume that for each θ ∈ Rp, the conditional expectation E(θ ′X1|β ′X1)
exists and E(θ ′X1|β ′X1) = dθ β ′X1 for a real number dθ ∈ R.

Assumption 3. We assume that the design matrix and the error term satisfy Assumptions 1 and
2, the cumulative distribution function F of the response variable Y1 is increasing and g in 1 is
increasing with respect to the first argument.

RankLASSO does not estimate β , but the vector

θ
0 = argmin

θ∈Rp
EQ(θ), (5)

where Q(θ) is defined in (4). Since H is positive definite, the minimizer θ 0 is unique and is
given by the formula

θ
0 =

1
n2 H−1

(
E

n

∑
i=1

RiXi

)
(6)

See that
n

∑
i=1

RiXi =
n

∑
i=1

n

∑
j=1

I(Yj ≤ Yi)Xi = ∑
i̸= j

I(Yj ≤ Yi)Xi +
n

∑
i=1

Xi

and that E(Xi) = 0. So, we can rewrite (6) as

θ0 =
n−1

n
H−1

µ (7)

where µ = E[I(Y2 ≤ Y 1)X1] is the expected value of the U-statistic

A =
1

n(n−1) ∑
i ̸= j

I(Y j ≤ Yi)Xi. (8)

The following theorem shows the relation between θ 0 and β .

Theorem 1. Consider the model (1). If Assumptions (1) and (2) are satisfied, then

θ0 = γβ β

with

γβ =
n−1

n β ′µ

β ′Hβ
=

n−1
n Cov(F(Y1),β

′X1)

β ′Hβ
, (9)

where F is a cumulative distribution function of a response variable Y1.

Additionally, if F is increasing and g is increasing with respect to the first argument, then
γβ > 0, so the signs of β coincide with the signs of θ 0 and

T = { j : β j ̸= 0}= { j : θ
0
j ̸= 0}. (10)
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Note that for Q(θ) defined in (4), we have

Q(θ) =
1
2n

n

∑
i=1

(Ri/n−θ
′Xi)

2 +θ
′X̄/2− n+1

4n
+1/8.

Thereforem due to the fact the covariates Xi are centered, for all the proofs in this report, we
consider Q(θ) without subtracting 0.5, that is

Q(θ) =
1

2n

n

∑
i=1

(Ri/n−θ
′Xi)

2.

This is to merely simplify notation.

We will use the following lemma to prove Theorem 1.

Lemma 1. Let U be a random variable that is not degenerate i.e. P(U = u)< 1 for each u ∈R.
Moreover, let f ,h : R→ R be an increasing function. Then Cov( f (U),h(U))> 0.

Proof. Clearly, we have

E(Q(θ)) =
1

2n3

n

∑
i=1

ER2
i −

1
n2

n

∑
i=1

E(Riθ
′Xi)+

1
2n

n

∑
i=1

E(θ ′Xi)
2.

Vectors (X1,Y1), . . . ,(Xn,Yn) are i.i.d. and Xi are centered, so for all i ̸= 1

E(Riθ
′Xi) = E(I(Y1 ≤ Yi)θ

′Xi)+ ∑
j ̸={1,i}

E(I(Yj ≤ Yi)θ
′Xi)

= E(I(Y1 ≤ Yi)θ
′X1)+ ∑

j ̸={1,i}
E(I(Y j ≤ Yi)θ

′X1)

= E(R1θ
′X1).

Moreover, ranks R1, . . . ,Rn are identically distributed; so ∑
n
i=1E(R2

i ) = nE(R2
1). Therefore, we

obtain that E(Q(θ)) = 1
2E(

Ri
n −θ ′X1)

2. Using Jensen’s inequality and Assumption (2), we have

E(Q(θ)) =
1
2
EE

[(
R1

n
−θ

′X1

)2

|β ′Xi,εi, i = 1, . . . ,n)

]

≥ 1
2
E
[
E
(

R1

n
−θ

′X1

)
|β ′Xi,εi, i = 1, . . . ,n)

]2

=
1
2
E
[

R1

n
−E(θ ′X1|β ′X1)

]2

=
1
2
E
[

R1

n
−E(θ ′X1|β ′X1)

]2

≥ min
d∈R

E(Q(dβ )).

Obviously, we have mind∈RE(Q(dβ )) = E(Q(γβ β )), where γβ is defined in 9. Since θ 0 is the
unique minimizer of EQ(θ), we obtain the first part of the theorem. Again, denote Z = β ′X1
and ε = ε1. It is clear that γβ > 0 is equivalent to Cov(Z,F(g(Z,ε)))> 0. This covariance can
be expressed as

E(ZF(g(Z,ε))) = Eh(ε), (11)

6



where h(a) = E[ZF(g(Z,ε))|ε = a] = E(ZF(g(Z,a))) for arbitrary a. This fact simply follows
from E(Z) = 0 and independence between Z and ε . If F is increasing and g is increasing with
respect to the first variable, then h(a) > 0 for arbitrary a by Lemma 1. Clearly, it implies that
(11) is positive.

3 Estimation and Separability of RankLASSO when p> > n

In this section the properties of Rank-Lasso will be discussed when the number of predictors is
greater than the sample size. The following assumption is needed to obtain the results.

Assumption 4. Let (X1)T be the vector of significant predictors and suppose that it is subgaus-
sian with coefficients τ0 > 0 i.e for each u ∈ Rp0 we have Eexp(uT (X1)T ) ≤ exp(τ2

0 uT u/2).
Also we have, the insignificant predictors are univariate subgaussian, i.e for each a ∈ R and
j ̸∈ T , E(aX1 j)≤ exp(τ2

j a2/2), for τ j > 0. Denote, τ = max(τ0,τ j, j ̸∈ T ).

This assumption of subgaussianity is required to get exponential inequalities for the proofs
which will be discussed in this section.This condition is used to work with random predictors
in high dimensional model. Wang and Zhu (2015) has proven the model selection consistency
of high dimensional Rank-Lasso based on restricted irrepresentable condition.Also, as it has
been obtained using polynomial upper bound on the dependency of p on n, it fails to give clear
idea of the tuning parameter selection. Instead of asymptotic results (Wang and Zhu (2015))
this report will state the non-asymptotic results which do not require irrepresentable condition.
It allows p to increase exponentially as function of n. It also specifies the method od selecting
the tuning parameter.
In case of n > p, usually the minimum eigen value of the matrix XT X/n is used to present the
correlation between predictors. But, for large dimensions this value is zero. Then it is required
to replace the minimum eigenvalue by by some other relevant measure.
Let T be the set of indices corresponding to the support of true vector β . Suppose that θT and
θT ′ be the restrictions of the vector θ ∈Rp to indices of the indices from T and T ′, respectively.
Now for ζ > 1, a cone can be considered,

C(ζ ) = {θ ∈ Rp : |θT ′ |1 ≤ ζ |θT |1}

For p > n three different characteristics have been introduced for measuring the potential for
consistent estimation of model parameters.

• Restricted Eigen Value (Bickel et al. (2009)):

RE(ζ ) = inf
0 ̸=θ∈C(ζ )

θ T XT Xθ

n |θT |22

• Compatibility Factor (Van de Geer (2008)):

K(ζ ) = inf
0̸=θ∈C(ζ )

p0θ T XT Xθ

n |θT |21

• Cone Invertibility Factor(CIF, Ye and Zhang (2010)):

F̄q(ζ ) = inf
0̸=θ∈C(ζ )

p1/q
0 |XT Xθ |∞

n |θT |q
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These conditions are much weaker than the irrepresentability condition. In this report the CIF
will be used as it allows formulation of convergence results for any lq norm, for q ≥ 1. The
population version of CIF is given by,

Fq(ζ ) = inf
0̸=θ∈C(ζ )

p1/q
0 |Hθ |∞
n |θT |q

, where H = E(XT X).
The following theorem is presented for estimation accuracy of Rank-Lasso.

Theorem 2. Let a ∈ (0,1), q ≥ 1 and ζ ≥ 1 be arbitrary. Suppose that Assumptions 3 and 4
are satisfied. Also,

n ≥
K1 p2

0τ4(1+ζ )2log(p/a)
F2

q (ζ )
(12)

and

λ ≥ K2
ζ +1
ζ −1

τ
2

√
log(p/a)

kn
(13)

where K1,K2 are universal constants and k is the smallest eigen value of the correlation matrix
between true predictor HT = (Hi, j) j,k∈T . Then there exists a universal constant K3 such that,

|θ̂ −θ
0 |q ≤

4ζ p1/q
0 λ

(ζ +1)Fq(ζ )
(14)

with probability at leasr 1−K3a.
Moreover, if X1 ∼ Normal(0,H), then k,τ can be dropped from inequalities 12 and 13.

Proof. Proving the theorem will require the following lemmas.

Lemma 2. Suppose that Z1,Z2, ...,Zn are i.i.d random variables and there exists L > 0 so that
C2 = Eexp( |Z1 |/L) is finite. Then for arbitrary u > 0,

P
(

1
n

n

∑
i=1

(Zi −E(Zi))> 2L
(

C

√
2u
n
+

u
n

))
≤ exp(−u)

Lemma 3. Consider a U-statistic, U = 1
n(n−1) ∑i̸= j h(Zi,Z j), where h is a kernel based on i.i.d

random variables Z1, ...,Zn. Suppose that, there exists L > 0 so that C2 =Eexp( |h(Z1,Z2) |/L)
is finite. Then for arbitrary u > 0,

P
(

U −E(U)> 2L
(

C

√
6u
n
+

3u
n

))
≤ exp(−u)

Lemma 4. If assumptions 3 and 4 are satisfied, then for any j = 1, ..., p and u > 0,

P
(

1
n

n

∑
i=1

Xi jX ′
i θ

0 − n−1
n

µ j > 5
τ2
√

k

(
2

√
2u
n
+

u
n

))
≤ exp(−u)

Moreover, if X1 follows Normal(0,H), then τ and k can be dropped.
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Lemma 5. Suppose that assumption 4 and condition 12 are satisfied. Then for arbitrary a ∈
(0,1), q ≥ 1,ζ > 1 we have F̄q(ζ )≥ Fq(ζ )/2.

Let us denote Ω = { |∇Q(θ 0) |∞ ≤ ζ−1
ζ+1λ}. Then for A = 1

n(n−1) ∑i̸= j I(Yj ≤ Yi)Xi and for
every j = 1,2, ..., p we get,

∇ jQ(θ 0) =

[
1
n

n

∑
i=1

Xi jX ′
i θ

0 − n−1
n

µ j

]
+

n−1
n

(µ j −A j)− 1
n2

n

∑
i=1

Xi j (15)

Now we can find the probabilistic bound of each term of equation 15.
Consider the middle term of equation 15. Take h(z1,z2) =

1
2 [I(y2 ≤ y1)x1 j + I(y1 ≤ y2)x2 j].

Now we can apply Lemma 3. Since X1 j and X2 j are i.i.d, for arbitrary L > 0 we have,

Eexp( |h(Z1,Z2) |/L)≤ [Eexp( |X1 j |/(2L))]2 (16)

Since X1 j is subgaussian 16 can be bounded by 4exp
(

τ2

4L2

)
. Putting L = τ and u = log(p/a)

in Lemma 3 we get the universal constant K1,

P
(

A j −µ j > K1τ

√
log(p/a)

n

)
≤ a

p

The bound for the first and third term can be obtained similarly using Lemma 4 and 2
respectively. Combining these results we get, P(Ω)≥ 1−K2a provided λ satisfies the condition
13.
Let us denote θ̃ = θ̂ −θ 0, where θ̂ is the minimizer of convex function 4, also we have , for
θ̂ j ≤ 0,∇ jQ(θ̂) =−λ sign(θ̂ j) and for θ̂ j = 0, |∇ jQ(θ̂) | ≤ λ , for any j = 1, ..., p.
Note that, |θ̃ |1 = |θ̃T |1 + |θ̃T ′ |1. Now we can get,

θ̃
′X ′X θ̃/n = θ̃

′[∇Q(θ̂)−∇Q(θ 0)]

= ∑
j∈T

θ̃ j∇ jQ(θ̂)+ ∑
j∈T ′

θ̂ j∇ jQ(θ̂)− θ̃
′
∇Q(θ0)

≤ λ ∑
j∈T

|θ̃ j |−λ ∑
j∈T

|θ̂ j |+ |θ̃ |1 |∇Q(θ 0) |∞

= (λ + |λQ(θ 0) |∞) |θ̃T |1 +( |∇Q(θ 0) |∞ −λ ) |θ̃ ′
T |1

As we are considering the event Ω we get,

|θ̃ ′
T |1 ≤

λ + |∇Q(θ 0) |∞
λ − |∇Q(θ 0) |∞

|θ̃T |1 ≤ ζ |θ̃T |1

Thus we prove θ̃ ∈C(ζ ). Now, from the definition of F̄q(ζ ) we get,

|θ̂ −θ
0 |q ≤

p1/q
0 |X ′X(θ̂ −θ 0)/n |∞

F̄q(ζ )

≤ p1/q
0

|∇Q(θ̂) |∞ + |∇Q(θ 0) |∞
F̄q(ζ )

≤
4ζ p1/q

0 λ

(ζ +1)Fq(ζ )
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Theorem 2 gives the bound to the estimation error in Rank-Lasso.This result can also be
used to get the consistency conditions for the estimates. By replacing a by a sequence an, that
does not decreases too fast and replacing λ by corresponding sequence λn satisfying condition
13 the consistency conditions can be presented. The consistency holds even when number
of predictors is significantly larger than sample size. For example, when p = exp(nα1), p0 =
nα2,a = exp(−nα1), where α1 +2α2 < 1, and λ takes the value exactly equal to the right hand
side of the inequality 13 then the consistency in l∞ norm holds provided F∞(ζ ) and k are either
bounded below or slowly converge to 0 and τ is bounded above or slowly diverges to ∞.
As a consequence of Theorem 2 the following corollaries can be proven.

Corollary 2.1. If the conditions of Theorem 2 are satisfied for q=∞, then for θ 0
min ≥

8ζ λ

(ζ+1)F∞(ζ )

we have,

P(∀ j∈T,k ̸∈T |θ̂ j |> |θ̂k |)≥ 1−K3a

where θ 0
min = min j∈T |θ 0

j |

In the above corollary 2.1 it is stated that θ 0
min can not be too small. From Theorem 1 we

have θ 0 = γβ β . Hence according to Corollary 2.1 ,

min
j∈T

|β j | ≥
8ζ λ

γβ (ζ +1)F∞(ζ )

Here the denominator contains γβ =
n−1

n β ′µ
β ′Hβ

. This factor is usually smaller than 1, hence large
sample size is required for Rank-Lasso to work well.
Now, the following corollary is stated which is a simplified version of Theorem 2.

Corollary 2.2. Let a ∈ (0,1) be arbitrary and Assumptions 3 and 4 are satisfied. Suppose that,
there exists ζ0 > 1,C1 > 0 and C2 < ∞ such that k ≥C1,F∞(ζ0)≥C1 and τ ≤C2. Then for,

n ≥ K1 p2
0log(p/a)

λ ≥ K2

√
log(p/a)

n
we have ,

P( |θ̂ −θ
0 |∞ ≤ 4λ/C1)≥ 1−K3a (17)

where K1,K2 depend only on ζ0,C1,C2 and K3 is a universal constant as mentioned in Theorem
2.

4 Modifications of RankLASSO
RankLASSO model considered in previous section has a major drawback, that only if the re-
strictive irrepresentable condition is satified, only then can it recover the true model. If the
condition is not satisfied, then RankLASSO can achieve a high power only if it includes a large
number of irrelevant predictors. To overcome this limitation, we state the following two the-
orems which is based on application of weighted and thresholded versions of RankLASSO.
We use the initial RankLASSO estimator θ̂ of θ 0, which is a consistent estimator under the
assumptions of the previous theorem. We state the following theorems under simplified as-
sumptions made under Corollary 2.2.
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4.1 Thresholded RankLASSO
We first consider the thresholded RankLASSO, denoted by θ̂ th which is defined as follows:

θ̂
th
j = θ̂ jI(|θ̂ j|> δ ), j = 1,2, . . . , p (18)

where θ̂ is the RankLASSO estimator in (3) and δ > 0 is a threshold.

Theorem 3. Assuming Corollary 2.2 holds and that the sample size and the tuning parame-
ter λ for RankLASSO are selected according to Corollary 2.2. Further, suppose that θ 0

min =
min j∈T |θ 0

j | is such that it is possible to select the threshold δ so that

θ
0
min/2 ≥ δ > K4λ

where K4 = 4/C1 is the constant from (17), then the following holds,

P(T̂ th = T )≥ 1−K3a

where K3 is the universal constant from Theorem 2 and T̂ th = {1 ≤ j ≤ p : θ̂ th
j ̸= 0} is the

estimated set of relevant predictors by thresholded RankLASSO.

Proof. We proceed with the proof as a consequence of the uniform bound (17) from Corollary
2.2. For any j ∈ T , we obtain,

|θ̂ j|= |θ̂ j −θ
0
j | ≤ K4λ < δ ,

so j /∈ T̂ th. Further if j ∈ T , then,

|θ̂ j| ≥ |θ 0
j |− |θ̂ j −θ

0
j 0| ≥ 2δ −K4λ > δ

The importance of this theorem is highlighted by the fact that the thresholded RankLASSO
can potentially identify the support of β under milder regularity conditions. This implies that
the sequence of nested models based on the ranking provides by the RankLASSO estimates
under these conditions contains the true model.

4.2 Weighted RankLASSO
We now consider the weighted RankLASSO that minimizes the following:

Q(θ)+λa

p

∑
j=1

w j|θ j| (19)

where λa > 0 and the weights are chosen according to the following scheme: for arbitrary
number K > 0 and the RankLASSO estimator θ̂ , from section, we have w j = |θ̂ |−1

j for |θ̂ j| ≤
λa, and w j ≤ K, otherwise. We discuss the properties of weighted RankLASSO estimator in
the following theorem:

11



Theorem 4. We assume that Corollary 2.2 holds and the sample size and the tuning parameter
λ for RankLASSO are selected accordingly as done in Corollary 2.2. Let λa = K4λ , where
K4 = 4/C1 is from (17). Additionally, we suppose that the signal strength and sparsity satisfy
θ 0

min/2 > λa and p0λ ≤ K5, where K5 is sufficiently small constant. Then, with a probability of
atleast 1−K6a there exists a global minimizer θ̂ a of (19), such that θ̂ a

T ′ = 0 and

|θ̂ a
T −θ

0
T |1 ≤ K7 p0λ (20)

where K6 and K7 are constants dependling only on K1, . . . ,K5 and constant K, that is used in
the definition of weights.

Proof. We begin by defining the following function:

Γ
a(θ) = Q(θ)+λa

p

∑
j=1

w j|θ j| (21)

We fix a ∈ (0,1) and set E0 = 3 (which is considered for simplicity). We consider the event
Ω = {|∇Q(θ 0)|∞ ≤ λ/2}. We know from Theorem 2 that P(Ω)≥ 1−K3a which also satisfies
the inequality (17). The proof involves two steps.
We first show that with high probability there exists a minimizer of the function,

g(θT ) = Γ
a(θT ,0)

that is close to θ 0
T in the ℓ1 norm. Let that mnimizer be θ̂ a

T . In the second part, we obtain the
vector (θ̂ a

T ,0), that is, θ̂ a
T augmented by p− p0 zeros, is the minimizer of the function (21).

We consider the vectors v ∈ Rp0 having fixed common ℓ1-norm and a sphere

{θT = θ
0
T + p0λv} (22)

Suppose that |v|1 is sufficiently large. We take arbitrary θT from the sphere (22) and calculate
that

Q(θT ,0)−Q(θ 0) =
1
2

p2
0λ

2v′
1
n

X ′
T XT v+ p0λv′[∇Q(θ 0)]T

Let κ̂ be the minimal eigenvalue of the matrix 1
nX ′

T XT , then we have v′X ′
T XT v ≥ κ̂|v|21/p0.

Moreover, for the event Ω, we obtain

|v′[∇Q(θ 0)]T | ≤ |v|1[∇Q(θ 0)]T |∞ ≤ λ |v|1/2

Proceeding in similar lines of previous lemma, we can show that κ̂ ≥ κ/2 with probability
close to one. We therefore obtain,

Q(θT ,0)−Q(θ 0)≥ κ p0λ
2|v|21/4− p0λ

2|v|1/2 (23)

Now we focus on the penalty term and obtain the following:∣∣∣∣λa

p0

∑
j=1

w j[|θ 0
j + p0λv j|− |θ 0

j |]
∣∣∣∣≤ λa p0λ

p0

∑
j=1

w j|v j| (24)

Moreover, for j ∈ T , we have from Corollary 2.2 that

|θ̂ j| ≥ |θ 0
j |− |θ̂ j −θ

0
j | ≥ θ

0
min −K4λ > λa

12



so w j ≤ K. Thus the right side of (24) is bounded by Kλλa p0|v|1. Combining with (23), we
get

g(θT )−g(θ 0
T )≥ p0λ

2|v|1(κ|v|1/4−1/2−K4K) (25)

Clearly, the right hand side of (25) is bounded, because the norm |v|1 can be taken sufficiently
large, K, K4 are constants and κ is lower bounded by a constant. Thus, the convex function
g(θT ) takes on a sphere (22) values larger than the in the center θ 0

T . So, there exists a minimizer
inside the sphere.

We next show that the random vector (θ̂ a
T ,0) minimizes (21)with high probability. Thus we

have to prove that the event

{|∇ jQ(θ̂ a
T ,0)| ≤ w jλa for every j /∈ T} (26)

has probability close to one. by Corollary 2.2we have for j /∈ T ,

|θ̂ j|= |θ̂ j −θ
0
j | ≤ K4λ

Therefore, w j ≥ λ−1
a . Further, we can calculate that

∇Q(θT ,0) =
1
n

X ′
T XT θT −

[
n−1

n
A+

1
n2

n

∑
i=1

Xi

]

So we obtain the inequality∣∣∣∣[∇Q(θ̂ a
T ,0
]

T ′

∣∣∣∣
∞

≤
∣∣∣∣1nX ′

T ′XT (θ̂
a
T −θ

0
T )

∣∣∣∣
∞

+ |[∇Q(θ 0)]T ′|∞ (27)

Consider the event Σ= {|∇Q(θ 0)|∞ ≤ λ/2} that has probability close to 1 by proof of Theorem
14. The second term on the right-hand side of (27) can be bounded by λ/2. The former one
can be decomposed as∣∣∣∣1nX ′

T ′X +T (θ̂ a
T −θ

0
T )

∣∣∣∣
∞

≤
∣∣∣∣(1

n
X ′

T ′XT −H ′
2

)
(θ̂ a

T −θ
0
T )

∣∣∣∣
∞

+ |H ′
2(θ̂

a
T −θ

a
T )|∞

≤
∣∣∣∣1nX ′

T ′XT −H ′
2

∣∣∣∣
∞

|θ̂ a
T −θ

0
T |1 + |H ′

2|∞|θ̂ a
T −θ

0
T |1 (28)

The expression |H2|∞ is bounded by 1, so from the first part of the proof, we can bound, with
high probability, the second term in (28) by K6 p0λ . The ℓ∞-normin the former expression can

be bounded with probability close to one, by K7

√
log(p/a)

n as in proof of a previous lemma.
Therefore, we have just proved that with probability close to one,∣∣∣∣[∇Q(θ̂ a

T ,0)
]

T ′

∣∣∣∣
∞

≤ K8 p0λ

Combining it with the fact that w j ≥ λ−1
a we obtain that the event (26) has high probability

close to one, since from assumptions of the theorem, pλ ≤ K5 for K5 small enough.
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5 Data Analysis

5.1 Simulations
In this section we present results of our simulation study illustrating the properties of Ran-
kLasso and its variants in variable selection.

We consider the setup, where the number of explanatory variables p increases with n ac-
cording to the formula p= 0.01n2. We consider the following pairs (n, p) : (100,100),(200,400),
(300,900),(400,1600). For each of these combinations we assume that the number of true
variables in the model is given by p0, where p0 = #

{
j : β j ̸= 0} ∈ {3,10,20}.

In three of the simulation scenarios the rows of the design matrix are generated as random
vectors from the multivariate normal distribution with the covariance matrix Σ defined as fol-
lows
- for the independent case Σ = I,
- for the correlated case Σii = 1 and Σi j = 0.3 for i ̸= j.
In one of the scenarios the design matrix is created by simulating the genotypes of p inde-
pendent Single Nucleotide Polymorphisms (SNPs). In this case the explanatory variables can
take only three values: 0 for the homozygote for the minor allele (genotype {a,a} ), 1 for
the heterozygote (genotype {a,A} ) and 2 for the homozygote for the major allele (genotype
{A,A} ). The frequencies of the minor allele for each SNP are independently drawn from the
uniform distribution on the interval (0.1,0.5). Then, given the frequency π j for j-th SNP, the
explanatory variable Xi j has the distribution: P

(
Xi j = 0

)
= π2

j , P
(
Xi j = 1

)
= 2π j

(
1−π j

)
and

P
(
Xi j = 2

)
=
(
1−π j

)2.
The full description of the simulation scenarios is provided below:

- Scenario 1
Y = Xβ + ε,

where X matrix is generated according to the independent case, β1 = . . . = βp0 = 3 and the
elements of ε = (ε1, . . . ,εn) are independently drawn from the standard Cauchy distribution,
- Scenario 2 - the regression model, values of regression coefficients and ε are as in Scenario
1, design matrix contains standardized versions of genotypes of p independent SNPs,
- Scenario 3 - the regression model, values of regression coefficients and ε are as in Scenario 1
and the design matrix X is generated according to the corvelated case,
- Scenario 4 - the design matrix X is generated according to the correlated case and the rela-
tionship between Yi and β ′Xi is non-linear:

Yi = exp
(

1+0.05β
′
Xi

)
+ εi

and ε1, . . . ,εn are independent random variables from the standard Cauchy distribution.
In our simulation study we compare five different statistical methods:
- rL: RankLasso defined in (3) with λ := λrL and

λrL = 0.3

√
log p

n

- arL: adaptive RankLasso (19), with λα = 2λrL and weights

w j =

{ 0.1λrL
|θ̂ j| when

∣∣θ̂ j
∣∣> 0.1λrL,∣∣θ̂ j

∣∣−1
otherwise,

14



where θ̂ is the RankLasso estimator computed above. If θ̂ j = 0, then
∣∣θ̂ j
∣∣−1

= ∞ and jth

explanatory variable is removed from the list of predictors before running weighted RankLasso,
- thrL: thresholded RankLasso (18), where the tuning parameter for RankLasso is selected
by cross-validation and the threshold is selected in such a way that the number of selected
predictors coincides with the number of predictors selected by adaptive RankLasso,
- cv: regular Lasso with the tuning parameter selected by cross-validation. The values of
the tuning parameters for RankLasso and LADLasso were selected empirically so that both
methods perform comparatively well for p0 = 3 and n = 200, p = 400.

We compare the quality of the above methods by performing 200 replicates of the experi-
ment, where in each replicate we generate the new realization of the design matrix X and the
vector of random noise ε . We calculate the NMP: the average value of Numbers of Misclassi-
fied Predictors, i.e false positives plus false negatives.

Figure 1 illustrates the average number of falsely classified predictors for different methods
and under different simulation scenarios. In the case when predictors are independent, Ran-
kLasso satisfies assumptions of Wang and Zhu (2015) and its NMP decreases with p = 0.01n2.
We can also observe that for independent predictors, the adaptive and thresholded versions
perform similarly to the standard version of RankLasso. As expected, regular cross-validated
Lasso performs very badly, when the error terms come from the Cauchy distribution. Also, it is
interesting to observe that the first two rows in Figure 1 do not differ significantly, which shows
that the performance of RankLasso for the realistic independent SNP data is very similar to its
performance when the elements of the design matrix are drawn from the Gaussian distribution.

The behaviour of RankLasso changes significantly in the case when predictors are corre-
lated. Namely, NMP of RankLasso increases with p. On the other hand, NMP of both adaptive
and thresholded versions of RankLasso decrease with p, so these two methods are able to find
the true model consistently. As shown in Figure 1, in the case of correlated predictors thresh-
olded RankLasso is systematically better than adaptive RankLasso, even though both methods
always select the same number of predictors.

6 Supplementary Material
The interested reader is directed to https://github.com/ArkaB-DS/rankLASSO which contains
all the figures present here in the directory images and the corresponding codes to generate
them in the R directory.
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